Capillary Electrophoretic Immunoassay with Laser-induced Fluorescence Detection for Interferon-gamma

Hua ZHANG¹, Hai Ming WEI², Wen Rui JIN¹*

¹School of Chemistry and Chemical Engineering and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100
² Shandong Academy of Medical Sciences, Jinan 250001

Abstract: Capillary electrophoretic immunoassay with laser-induced fluorescence detection for recombinant human interferon-gamma (IFN- γ) was established. The limits of detection for three forms of IFN- γ are 6.9 ng/L, 5.7 ng/L and 5.0 ng/L, respectively.

Keywords: Capillary electrophoretic immunoassay, interferon-gamma.

Interferon-gamma (IFN- γ) is a multifunctional protein with three forms, *e.g.* IFN- γ glycosylated at a single site or both sites and non glycosylated. All these kind of IFN- γ take an important role in immunity adjustment¹. Comparing with conventional immunoassays, capillary electrophoretic immunoassay (CEIA) with laser-induced fluorescence (LIF) detection possesses several advantages such as high sensitivity, less sample consumption, high separation efficiency and facility to automation². The determination of IFN- γ by CEIA-LIF detection has not been reported yet.

In the present work, a non-competitive format was used. An excess amount of anti-IFN- γ monoclonal antibody labeled with fluorescein isothiocyanate (FITC) (Ab*) in phosphate-buffered saline (PBS) was added to the solution containing recombinant human IFN- γ (Ag) in PBS. After the completion of the immuno-reaction, the complexes of the three forms of IFN- γ with Ab* were formed. The complexes (Ab*-Ag) and free Ab* were separated by capillary electrophoresis (CE). The separation buffer consisted of 1.0×10^{-2} mol/L borax- 9.3×10^{-2} mol/L boric acid- 8.0×10^{-5} mol/L spermine (pH 8.0). CEIA-LIF was performed using a CE system with a LIF detector (488 nm Laser Module) (P/ACE MDQ, Beckman Coulter, Fullerton CA, USA).

The electropherograms of the solution containing Ab* and Ab*-Ag are shown in **Figure 1**. With increasing IFN- γ , the areas of peaks 1, 2 and 3 increased and the area of peak 4 decreased. Therefore, peak 1, 2 and 3 corresponded to the complexes of three forms of Ag with Ab*, respectively, and peak 4 is the peak of Ab*. Since the standard was a mixture of the three forms of IFN- γ , we could not identify them

^{*} E-mail: wenrujin@jn-public.sd.cninfo.net

Hua ZHANG et al.

Figure 1 Electropherograms of the solution containing Ab* and Ab*-Ag.

(1) 1×10^{-4} g/L Ab*, (2) (1)+1×10⁻⁶ g/L Ag, (3) (1)+Sample. Incubation for 15 min at room

(2) temperature. Capillary, 31.2 cm×50 µm I.D., Effective length, 21 cm; Coolant tubing, 14 cm; Separation voltage, 20 kV; Coolant, 20°C, Sample temperature, 10°C, Injection, 0.5 psi×3 s.

accurately. By comparison with the electropherogram (curve 3) of the extract of the NK cell with only two glycosylated forms of IFN- γ , the peak 3 in curve 2 should be the non glycosylated IFN- γ . Based on the area ratios of these three peaks, the amount ratios of the three forms could be calculated to be 52%, 19% and 29%, respectively. The linear range for the three forms of IFN- γ were $6.9 \times 10^{-9} \sim 2.1 \times 10^{-6}$ g/L, $5.7 \times 10^{-9} \sim 7.6 \times 10^{-7}$ g/L and $5.0 \times 10^{-9} \sim 1.2 \times 10^{-6}$ g/L, respectively. The detection limits were 6.9×10^{-9} , $5.7 \times 10^{-9} \sim 7.6 \times 10^{-9}$ so and 5.0×10^{-9} g/L, respectively. The relative standard deviations were $1.4 \sim 1.6\%$ for peak area. The two forms of IFN- γ in the extract of NK cell were quantified as 1.0 µg/L and 0.95 µg/L by the standard addition method. The total IFN- γ concentration was 1.95 µg/L, which agreed with the value (1.98 µg/L) detected by ELISA.

Acknowledgment

This project was supported by the National Natural Science Foundation of China (20235010).

References

- 1. Sun Weimin, Wang Huiqin, Cytokine Research Methodology, People Health Press 1999.
- 2. J. J. Bao, J. Chromatogr. B, 1997, 699, 463.

Received 6 January, 2003